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What is a signed graph?

» A signed graph G(V, E,o) is a graph G = (V, E) together
with a function o : E — {+, —} which attaches a sign to each
edge [2]

» Motivation: additional structure
» Signed graphs represent friendly or antagonistic relationships
» Applications to social science

» Mapping partisan polarization in Congress

» Resource allocation game in international relations
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Figure: Example Signed Graph



History and Structural Balance Theory

» From Sociology to Mathematics
> Logical construction due to Heider (1946) [3]
» Generalization to graphs by Harary and Cartwright (1956) [6]
» Structural Balance Theory
» Describe how local relationships impact global network
behavior
» Cogpnitive dissonance creates stress; move toward a balanced
equilibrium [3]
»  “The enemy of my enemy is my friend”
» Sign of a subgraph = product of the edges
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Figure: Heider's Triads



Generalize Balance to Any Network

» Theorem 1

(Structure Theorem) [6]: [|3_ t=C
Suppose G is a signed graph. Then / |
the following are equivalent: + / + N
1. G is balanced. A
2. Every closed chain in G is _ |
positive. | D
3. Any two chains between vertices _ / |
u and v have the same sign. T
4. The set V can be partitioned into | / |
two sets A and B such that every F
positive edge joins vertices of the
same set and every negative edge Figure: Signed

joins vertices of different sets. graph G



Balance as a Bipartition (Statement 4)

> Positive edges are omitted to preserve bipartite structure
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Figure: Example of a balanced and unbalanced bipartition



Enter: The Cycle Basis

» Statement 2 of the Structure Theorem posits that a balanced
graph must have all positive closed chains (cycles)
> Definition: The cycle space C(G) of a connected graph G is
the collection of its Eulerian spanning subgraphs.[5]
» Tedious to check all cycles; need a better tool to verify

» Intuition: what if we check only basis elements instead of
every cycle?

» Definition: A spanning tree in a graph G is a subgraph of G
that includes every vertex of G and is also a tree.[5]

» Theorem 2 (Cycle Basis) [5]:
Let G be a graph, and let C(G) be its cycle space. Let T be a
spanning tree of G, and for each edge e not in T, let C, be
the unique cycle in G that contains e and has all other edges
in T. Then B={C.|e ¢ T} is a basis for C(G).



Cycle Basis Example

> Note: T is not unique

(a) Signed Graph G
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(b) Spanning Tree T



Cycle Basis Example Continued

» To construct the cycle basis, find each unique cycle created by
attaching edges e = Eg\ET to T
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Figure: Attaching missing edges e to T



Cycle Basis Example Continued

» The cycle basis is:
» Minimal
» Not unique
» To verify that a graph is balanced, it's enough to simply verify
balance of each basis element
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Figure: Cycle Basis B of C(G)



Cycle Basis Example Continued

» With the basis elements defined, one can create any cycle in
the graph with a combination of basis elements
» Definition: Given C;, G; € C(G), the symmetric difference is
defined to be GG & G = (G \ G)U (G \ G).
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Figure: Computing a cycle from two basis elements



Addressing Weaknesses

> Weighted

» Directed

> Weak balance for n-partite graphs
P Partial balance



Application 1: Partisan Polarization in Congress

» Paper: Detecting coalitions by optimally partitioning signed
networks of political collaboration, Samin Aref and Zachary
Neal (2020) [1]

» Balance can serve as a measure for partisan polarization: a
balanced graph is completely polarized
» The authors count the number of co-authored bills between
any two legislators and compare against the null
» If the count is lower than the null, connect with a negative
edge
» If the count is greater than the null, connect with a positive
edge
> However, the existence bipartisan bills violate the strictly
negative bipartition between groups which defines balance



Partisan Polarization in Congress, Continued

» Instead, measure partial balance with the Triangle Index and
Frustration Index
» The Triangle Index T(G) is the fraction of positive 3-cycles in
the graph
» The Frustration Index F(G) measures the number of positive
edges between groups
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Figure 2. Two measures of partial balance indicating an overall increase in political polarization in (A) US
House of Representatives and (B) US Senate over the time period 1979-2016.



Application 2: The Power Allocation Game

» Paper: Games on Signed Graphs, Yuke Li and A. Stephen
Morse (2022) [4]

» In International Relations, countries interact with each other
in an adversarial networked environment: alliance ties
determine where resources get allocated

» Countries may choose to allocate some of their wealth to their
friends or to the destruction of their enemies

» Primitives:

Country index n = {1,2,...,n}

An environment Eg = {V, e}

F; = {friends of country i}

A; = {adversaries of country i}

pi = power of country i, measured in currency

An alliance § with members j € § C n with j € F;

Enemies of the alliance As = J;cs Ai
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The Power Allocation Game, Continued

» Countries allocate p; via a (1 x n) strategy vector uj; subject
to ujy + ... + ujp = p;.
P> Allocations are represented with a directed graph
Ea = {V,€a} which has the weights u;j;; negative signs are
attached to enemies and positive signs are attached to friends
» A country will survive if p; > jea; Pi (their power is at least
equal to all adversaries) or if 3 ;. s pi > > ics, pj (they are a
part of an alliance which matches the power of adversary
alliances)
» Takeaways:
» Countries pursue “survival and success in a constant or a
changing environment, and may bring about some of the
changes to the environment itself.” [4]

» Countries are constrained both by their resources and their
relationships
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End Frame

The presentation is over.
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