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“The enemy of my enemy is my friend.”

Introduction and the Theory of Structural Balance

In the context of building mathematical models, graphs are useful abstractions that em-
power researchers to describe relational phenomena. Moreover, graphs have a dual character
in the sense that they have both intuitive visual representations and useful matrix forms.
However, models of certain real-life phenomena may require additional structure in order to
account for their complexity. Such structure can be achieved by modifying existing graphs
with additional features, such as adding a scalar weight or a sign. Chiefly, this paper will
examine signed graphs will outline the basic properties of the cycle basis and its role in ver-
ifying balance between groups in a social networks. Furthermore, this paper will investigate
the applications of signed graphs in social science, particularly in mapping coalition networks
in Congress and in describing resource allocation in international relations.

Recall that a graph G has a vertex set V and an edge set E. Then, a signed graph is one
whose edges are each affixed with either a positive or negative sign, which may symbolize
sympathetic or antagonistic relationships, respectively. Put more formally, a signed graph
G(V,E, σ) is a graph G = (V,E) together with a function σ : E → {+,−} which attaches
a sign to each edge [2]. The signs therefore represent strong, albeit unitless, symmetric
relationships between any two vertices v and u in V [7]. In this sense, if v and u share a
positive edge, they are friends; if v and u share a negative edge, they are enemies.

Signed graphs first arose in the field of sociology. Although first published with a logical
rather than graph theoretic construction, psychologist Fritz Heider’s 1946 study of inter-
personal attitudes in small groups opened the pathway to a strict analysis of group dynamics
[7]. Heider was interested in how local information, such as the relationships between two
individuals, impacted the global phenomenon of balance, particularly in triads of individ-
uals. In his article Attitudes and Cognitive Organization, Heider argues that a “balanced
configuration exists if the attitudes towards the parts of a causal unit are similar.” [4] In
this study, the “causal unit” is a triad where the elements are also allowed to include events,
items and entities in addition to people. Put simply, Heider wanted to outline which exact
scenarios minimized tension between the agents of the causal unit.

In Heider’s logical construction, for three people p, o and q, a positive relation between
two people is denoted L, whereas a negative relation is denoted ∼ L. Between any two
people and an outside entity, such as a political position, a dissonance may arise when two
friends disagree. That disagreement, represented by figure (b), can be resolved if one of the
friends change their opinion. A decade later, two mathematicians, Cartwright and Harary,
extended Heider’s theory of balance to graphs. What they found was that all imbalanced
triads included an odd number of negative signs [7]. One could equivalently multiply the
signs of each cycle to verify if a graph is balanced. If all cycles have a positive product, then
the graph is balanced. Below are the Heider’s logically stated relationships for triads, and
their graph counterparts.
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Figure 1: Heider’s Triads

Balance in a signed graph could heuristically be described as an “absence of tension”
between different actors, such as nations or policymakers, where they work well together [7].
Moreover, these triads are too limited to describe large social networks. Harary’s structure
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theorem generalizes the notion of balance from 3-cycles to cyclic graphs of any size.

Theorem 1 (Structure Theorem) [7]:
Suppose G is a signed graph. Then the following are equivalent:

1. G is balanced.

2. Every closed chain in G is positive.

3. Any two chains between vertices u and v have the same sign.

4. The set V can be partitioned into two sets A and B such that every positive
edge joins vertices of the same set and every negative edge joins vertices of
different sets.

The primary interpretation of this theorem is that within any balanced network there are
two groups; moreover, ingroup members should share mutual friendships with each other and
should have a mutual dislike of the outgroup. In the previous triad example (1c), p and q
formed such an ingroup where they mutually disliked o. A generalization of this theorem to
any number of ingroups will be discussed later in this paper. For now, please see an example
and a nonexample of balance in a more complicated social network.
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Figure 2: A larger social network

Note that graph G can be partitioned into two groups, namely Group 1 = {A,B,C,D}
and Group 2 = {E,F}. This graph is balanced due to the fact that each ingroup member
shares only positive edges and there are exclusively negative edges between groups, which
satisfies the fourth statement provided in the Structure Theorem. Roberts provides an
algorithm which assists in building these groups, although I will not include this in this
paper.

Additionally, since G is balanced, it must be bipartite with only negative edges connecting
between sets. Below is the bipartite representation of G, and the invalid bipartite form of
U , where there exists a positive edge {B,F} crossing from Group 1 to Group 2.

Intuitively, in graph G, those who are in Group 1 like each other, and those members of
Group 1 who know members of Group 2 universally dislike them. In graph U , however, B
shares a positive edge with F, which creates a conflict of interest between B and A, since A
shares a negative edge with F.

One can also verify that graph G is balanced with the second and third statements from
the Structure Theorem. To rigorously deal verify that G is unbalanced with statement 2, we
must first introduce the notion of a spanning tree and the cycle basis.

Definition 1: A spanning tree in a graph G is a subgraph of G that includes every
vertex of G and is also a tree. [6]

Statement 2 of the Structure Theorem requires that we verify that every cycle in G
is positive; however, this may be unrealistic for large graphs. Instead, the spanning tree
of G will help to identify some basis for which any cycle in G can be found through a
linear combination of basis elements. This is vastly more efficient for verifying balance than
enumerating every cycle in G—it’s enough to simply check for a positive product of edges
in the elements of the basis.

Definition 2: The cycle space C(G) of a connected graph G is the collection of
its Eulerian spanning subgraphs. [6]
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Figure 3: Bipartite forms of G and U

Recall that an Eulerian graph is a graph where one can traverse the entire graph passing
by each vertex once and ending back at the start. Interestingly, since every cyclic graph has
a cycle basis, one can decompose every connected graph into smaller Eulerian subgraphs. In
order to make use of this basis, we can define a binary operation which constructs any cycle
in G from two cycle basis elements Ci and Cj.

Definition 3: Given Ci, Cj ∈ C(G), the symmetric difference is defined to be
Ci ⊕ Cj = (Ci \Cj) ∪ (Cj \Ci).

The symmetric difference essentially combines only the unique edges from each basis
element. If they both share an edge, that edge is deleted. The symmetric difference the
set-theoretic analog of the exclusive or (XOR) from Boolean arithmetic.

Theorem 2 (Cycle Basis) [6]:
Let G be a graph, and let C(G) be its cycle space. Let T be a spanning tree of G,
and for each edge e not in T , let Ce be the unique cycle in G that contains e and
has all other edges in T . Then B = {Ce | e /∈ T} is a basis for C(G).

Finally, we can put these new items to use. First, we need to identify a spanning tree
T for G. It’s notable that many spanning trees may exist for a connected graph. Here are
three such examples of spanning trees for graph G.
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Figure 4: Example spanning trees

Then, we need to find all edges e from G which are not in T . Once a spanning tree is
chosen, take note of the edges of the spanning tree T and the original edges of the graph
G. To find the minimal set of cycles, one can simply connect the remaining edges from
graph G inside T . With the first example spanning tree, note that we have the edge set
ET = {{A,B}, {A,C}, {A,F}, {C,D}, {F,E}}. Now, we must connect the remaining edges
e = EG\ET = {{B,C}, {B,F}, {D,E}, {D,F}} to T , which are marked in blue below.
Doing so yields the following four cycles which constitute the cycle basis of graph G.
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Figure 5: Attaching missing edges e to T
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Table 1: Cycle Basis B of C(G)

Now that we have the cycle basis defined, we can construct any cycle from G by combining
basis elements with the symmetric difference. For example, if we wanted to construct the
cycle A,B, F,E,D,C,A from basis elements, we could compute B2 ⊕ B3, shown visually
below. The red edges are shared between the basis elements and are deleted in the final
product.
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Figure 6: Computing the symmetric difference

Interestingly, since the symmetric difference operates identically to the XOR operation,
the cycle space actually forms a vector space over Z2 [3]. Here, the addition of two edges
produces the number 2, but since the XOR operation is defined over Z2, that 2 ”rolls over”
into a 0, deleting the edge.

The cycle basis is useful for verifying that every cycle is positive. It’s enough to show
that if the signs of the basis elements are all positive, then every cycle in the original graph
G is also positive. To see why, consider the following cases of computing the symmetric
difference between two arbitrary balanced cycles Ci and Cj, and observe the behavior of
negative edges. Since both cycles in the example are balanced, they both must have an even
number of negative edges.
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1. There are equivalent negative edges in Ci and Cj. The symmetric difference deletes
them and produces an overall positive sign.

2. There are an even number of negative edges in both Ci and Cj, with Ci having ≥ 2n
more negative edges than Cj, with n ≥ 1. Here, any shared negative edges are deleted:

(a) If an even number of edges are deleted, then an even number of unique negative
edges will contribute to the resulting cycle, preserving the positive product.

(b) If an odd number of negative edges are deleted, that leaves an odd number of unique
edges in both Ci and Cj, therefore contributing an even number of negative edges
to the resulting cycle, preserving the positive product.

In sum, since every Bi ∈ B with i ∈ {1, 2, 3, 4} is a positive cycle, we can safely conclude
that all cycles in G are positive. Therefore, statement 2 of the Structure Theorem holds and
G is balanced.

Addressing Weaknesses and Content Review

Roberts points out that there are several flaws with the simple model of balance: the
model has assumes relationships are symmetric and lack a measure of strength, and the
notion of balance is assumed to be “black or white,” lacking any gradation [7]. Moreover,
the model of balance necessitates that networks be composed of only two groups. What
about when there are three or more groups?

To solve the symmetry issue, one could apply the concept of signed edges to digraphs,
applying positive and negative signs to the arcs instead. This procedure creates an analog
for the structure theorem with digraphs. To solve the strength issue, one could add scalar
weights to the edges. One could define a weight w ∈ R for each edge which represents the
strength of the association between two nodes; a weight w ≪ 0 is extremely antagonistic
and a weight w ≫ 0 is extremely friendly. Additionally, the idea of weak balance allows for
the graph to be partitioned into any number of groups rather than just two.

Since real life situations are unlikely to be perfectly balanced, perhaps the most useful
tools are measures of partial balance. For this reason, I argue that Roberts should have
included these partial measures as a key concept. The absence of modern methods could be
explained by the publish year of Discrete mathematical models, with applications to social,
biological, and environmental problems : 1976. Since then, researchers have progressively
improved signed graph models to more accurately model real life. A positive comment I
have on DMM is the format in which the content is introduced. Roberts first introduces
the motivation of signed graphs from the social sciences before introducing the rigorous
mathematics, and this influenced the flow of my paper heavily. The introduction of Heider’s
triads first, and the structure theorem later, eases the reader into the concepts with a steady
pace. Moreover, Roberts provides myriad homework applications which are engaging for the
student and help to illuminate the deeper ideas of the chapter. For example, one homework
problem asks the student to map out the diplomatic relations in the Middle East and suggest
which edges would optimally balance the network. Considering Syrian rebels just recently
ousted Bashar al-Assad, which shifted the power distribution around Syria and weakened
Russia and Iran, this practice problem is both engaging and relevant.

Since the chapter on signed graphs has a variety exercises—about half of the pages are
filled with practice problems—I was inspired to research the applications more in depth.
While I did not complete each exercise, each one gave an insight which aided in the research
process.

There is some notable content I omitted from this paper. Primarily, I fail to describe
in-depth the statements 3 and 4 from the structure theorem. While these statements stand
at the core of the subject matter, each topic could have taken a page or more, and so I opted
to focus heavily on statement 2 and examples. Moreover, I omit the a detailed discussion
of n-partite weak balance and the structure theorem for digraphs. Had this paper been a
longer project, I would have included these subjects in an extended section.

Finally, I was surprised by the degree of accuracy signed graphs provide in measuring real-
life social phenomena. As will be discussed in the next section, signed graphs are incredibly
useful in producing high-quality data of political coalition building. Researching for this
paper brought forward impressive work from computational social scientists. The two most
notable papers I found discuss coalition building in Congress and diplomatic power allocation
in International Relations.
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Further Applications

Signed networks can be applied to many situations in social science, including political
science and international relations. In political science, increasing partisan polarization in
the US is a well-studied phenomenon. For the purpose of modeling, balance in large political
networks can serve as a proxy for polarization. Aref and Neal employed structural balance
theory to analyze signed networks of legislators[1]. To construct the graph, the authors
collected data of all co-authored bills in both the Senate and the House, and compared these
to a stochastic model which served as the null. When two legislators shared less co-authored
bills than the null model, they were connected via a negative edge. When two legislators had
more co-authored bills than the null, they shared a positive edge. Now, the total balance of
the graph will inform the researcher the degree to which Congress is polarized.

Since real-life social networks are unlikely to be balanced, the authors use two modified
measurements which describe partial balance: triangle and normalized frustration indices.
The triangle index measures the fraction of positive triangles (3-cycles) in the graph. The
frustration index, on the other hand, measures the number of party-crossing co-authored
bills—the same type of edge which violates the exclusively negative bipartition. Both indices
therefore serve as a partial measure of balance. Finally, the authors corroborated prior studies
which found that partisan polarization is increasing in the US [1].

Secondly, in international relations, researchers have modeled complex diplomatic rela-
tionships by applying game theory to signed graphs[5]. Countries are constrained both by
their resources and their relationships when they try to maintain their geopolitical position.
In the paper Games on Signed Graphs, Li and Morse construct a power allocation game
between n countries within the environment of a unsigned graph. Firstly, they define the
primitives:

1. The country index n = {1, 2, ..., n}

2. An environment EE = {V , EE}

3. Fi = {friends of country i}

4. Ai = {adversaries of country i}

5. pi ∈ R+ = power of country i, measured as some-present value currency

6. An alliance S with members j ∈ S ⊂ n with j ∈ Fi

7. Enemies of the alliance AS =
⋃

i∈S Ai

Each country has two disjoint sets which demarcate their friends and their adversaries. In
the power allocation game, countries can choose to divide up their monetary power pi to
their friends and to the destruction of their enemies. They do so via a (1 × n) strategy
vector uij subject to ui1 + ... + uin = pi. Allocations then are represented with a directed
graph EA = {V , EA} which has the weights uij; negative signs are attached to enemies and
positive signs are attached to friends. The game theoretic processes of the allocation game
are beyond the scope of this paper. However, one key finding is that a country i can survive
if it can satisfy either of the following constraints:

1. pi ≥
∑

j∈Ai
pj : Country i has at least the same power as the total of its adversaries’

power

2.
∑

i∈S pi ≥
∑

j∈SA
pj: Country i is part of a coalition S which has at least the same total

power as the total all of the adversaries of the coalition’s power

The takeaway from this model is that signed graphs provide the perfect tool for describing
the ever-changing environment of international politics. The authors put it simply: countries
pursue ”survival and success in a constant or a changing environment, and may bring about
some of the changes to the environment itself.” For this reason, game theory on signed graphs
is an ongoing field of research with great value to defense organizations worldwide.
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